В 1833 г. Кирнан ввёл понятие о дольках печени как основе её архитектоники. Он описал чётко очерченные дольки пирамидальной формы, состо­ящие из центрально расположенной печёночной вены и периферически расположенных порталь­ных трактов, содержащих жёлчный проток, ветви воротной вены и печёночной артерии. Между эти­ми двумя системами располагаются балки гепато­цитов и содержащие кровь синусоиды.

С помощью стереоскопической реконструкции и сканирующей электронной микроскопии пока­зано, что печень человека состоит из столбиков гепатоцитов, отходящих от центральной вены, в правильном порядке чередующихся с синусоида­ми (рис. 1-9).

Ткань печени пронизана двумя системами кана­лов — портальными трактами и печёночными цент­ральными каналами, которые расположены таким образом, что не касаются друг друга; расстояние между ними составляет 0,5 мм (рис. 1-10). Эти си­стемы каналов расположены перпендикулярно друг другу. Синусоиды распределяются неравномерно, обычно проходя перпендикулярно линии, соеди­няющей центральные вены. Кровь из терминаль­ных ветвей воротной вены попадает в синусоиды; при этом направление кровотока определяется более высоким давлением в воротной вене по срав­нению с центральной.

Центральные печёночные каналы содержат истоки печёночной вены. Они окружены пограничной пла­стинкой печёночных клеток.

Портальные триады (синонимы: портальные тракты, глиссонова капсула) содержат терминаль­ные ветви воротной вены, печёночную артериолу и жёлчный проток с небольшим количеством круг­лых клеток и соединительной ткани (рис. 1-11). Они окружены пограничной пластинкой печёноч­ных клеток.

Анатомическое деление печени проводят по функциональному принципу. Согласно традицион­ным представлениям, структурная единица пече­ни состоит из центральной печёночной вены и ок­ружающих её гепатоцитов. Однако Раппапорт [34] предлагает выделять ряд функциональных ацинусов, в центре каждого из которых лежит порталь­ная триада с терминальными ветвями портальной вены, печёночной артерии и жёлчного протока — зона 1 (рис. 1-12 и 1-13). Ацинусы расположены веерообразно, в основном перпендикулярно по от­ношению к терминальным печёночным венам со­седних ацинусов. Периферические, хуже кровоснабжаемые отделы ацинусов, прилежащие к тер­минальным печёночным венам (зона 3), наиболее страдают от повреждения (вирусного, токсическо­го или аноксического). В этой зоне локализуются мостовидные некрозы. Области, расположенные ближе к оси, образованной приносящими сосуда­ми и жёлчными протоками, более жизнеспособ­ны, и позднее в них может начаться регенерация печёночных клеток. Вклад каждой из зон ацинуса в регенерацию гепатоцитов зависит от локализа­ции повреждения [30, 34].

 

 

Рис. 1-9. Структура печени человека в норме.

 

 

 

Рис. 1-10. Гистологическое строение пе­чени в норме. Н — терминальная печё­ночная вена; Р — портальный тракт. Ок­раска гематоксилином и эозином, х60. См. также цветную иллюстрацию на с. 767.

 

 

Рис. 1-11. Портальный тракт в норме. А — печёночная артерия; Ж — жёлчный про­ток. В — портальная вена. Окраска гематоксилином и эозином. См. также цветную иллюстрацию на с. 767.

 

 

Печёночные клетки (гепатоциты) составляют око­ло 60% массы печени. Они имеют полигональную форму и диаметр, равный приблизительно 30 мкм. Это одноядерные, реже многоядерные клетки, ко­торые делятся путём митоза. Продолжительность жизни гепатоцитов у экспериментальных животных составляет около 150 дней. Гепатоцит граничит с синусоидом и пространством Диссе, с жёлчным канальцем и соседними гепатоцитами. Базальной мембраны у гепатоцитов нет.

Синусоиды выстланы эндотелиальными клетка­ми. К синусоидам относятся фагоцитирующие клет­ки ретикулоэндотелиальной системы (клетки Купфера), звёздчатые клетки, также называемые жирозапасающими, клетками Ито или липоцитами.

В каждом миллиграмме нормальной печени че­ловека содержится приблизительно 202•103 клеток, из которых 171•103 являются паренхиматозными и 31•103 — литоральными (синусоидальные, в том числе клетки Купфера).

Пространством Диссе называется тканевое про­странство между гепатоцитами и синусоидальными эндотелиальными клетками. В перисинусоидальной соединительной ткани проходят лимфатические сосуды, которые на всём протяжении выстланы эндотелием. Тканевая жидкость просачивается через эндотелий в лимфатические сосуды.

 

 

Рис. 1-12. Функциональный ацинус (по Раппапорту). Зона 1 примыкает к входной (портальной) системе. Зона 3 примы­кает к выводящей (печёночной) системе.

 

 

Ветви печёночной артериолы образуют сплетение вокруг жёлчных протоков и впадают в синусои­дальную сеть на различных её уровнях. Они снаб­жают кровью структуры, расположенные в порталь­ных трактах. Прямых анастомозов между печёноч­ной артерией и воротной веной нет.

Экскреторная система печени начинается с жёлч­ных канальцев (см. рис. 13-2 и 13-3). Они не имеют стенок, а являются просто углублениями на контак­тирующих поверхностях гепатоцитов (см. рис. 13-1), которые покрыты микроворсинками. Плазмати­ческая мембрана пронизана микрофиламентами, образующими поддерживающий цитоскелет (см. рис. 13-2). Поверхность канальцев отделена от ос­тальной межклеточной поверхности соединитель­ными комплексами, состоящими из плотных кон­тактов, щелевых контактов и десмосом. Внутридоль­ковая сеть канальцев дренируется в тонкостенные терминальные жёлчные протоки или дуктулы (холангиолы, канальцы Геринга), выстланные куби­ческим эпителием. Они заканчиваются в более круп­ных (междольковых) жёлчных протоках, расположен­ных в портальных трактах. Последние разделяются на мелкие (диаметром менее 100 мкм), средние (±100 мкм) и крупные (более 100 мкм).

 

 

Рис. 1-13. Кровоснабжение простого ацинуса печени, зональное расположение кле­ток и микроциркуляторное периферичес­кое русло. Ацинус занимает примыкающие секторы соседних шестиугольных полей. Зоны 1, 2 и 3 соответственно представля­ют области, снабжаемые кровью с I, II и III степенью содержания кислорода и пи­тательных веществ. В центре этих зон находятся терминальные ветви принося­щих сосудов, жёлчных протоков, лимфа­тических сосудов и нервов (PS), а сами зоны простираются до треугольных пор­тальных полей, из которых выходят эти ветви. Зона 3 оказывается на периферии микроциркуляторного русла ацинуса, по­скольку её клетки так же удалены от аф­ферентных сосудов своего ацинуса, как и от сосудов соседнего ацинуса. Перивенулярная область образуется наиболее уда­лёнными от портальной триады частями зоны 3 нескольких прилежащих ацину-сов. При повреждении этих зон повреж­дённая область приобретает вид морской звезды (затемнённая область вокруг тер­минальной печёночной венулы, располо­женной в её центре — ЦПВ). 1, 2, 3 — зоны микроциркуляции; Г, 2', 3' — зоны соседнего ацинуса [34]. См. также цветную иллюстрацию на с. 768.

 


 

 

Поверхность гепатоцитов ровная, за исключени­ем нескольких участков прикрепления (десмосом). Из них в просвет жёлчных канальцев выдаются рав­номерно расположенные микроворсинки одинако­вых размеров. На поверхности, обращённой к си­нусоиду, располагаются микроворсинки разной дли­ны и диаметра, проникающие в перисинусоидальное тканевое пространство. Наличие микроворсинок свидетельствует об активной секреции или абсорб­ции (в основном жидкости).

Ядро содержит дезоксирибонуклеопротеин. Пе­чень человека после полового созревания содер­жит тетраплоидные ядра, а в возрасте 20 лет — также октоплоидные ядра. Считается, что повы­шенная полиплоидность свидетельствует о пред­раковом состоянии. В хроматиновой сети обнару­живаются одно или два ядрышка. Ядро имеет двой­ной контур и содержит поры, обеспечивающие обмен с окружающей цитоплазмой.

Митохондрии также имеют двойную мембрану, внутренний слой которой образует складки, или кристы. Внутри митохондрий протекает огромное количество процессов, в частности окислительное фосфорилирование, при которых происходит ос­вобождение энергии. В митохондриях содержится много ферментов, в том числе участвующих в цикле лимонной кислоты и бета-окислении жирных кис­лот. Энергия, высвобождающаяся в этих циклах, затем запасается в виде АДФ. Здесь протекает так­же синтез гема.

Шероховатая эндоплазматическая сеть (ШЭС) выглядит как ряд пластинок, на которых распола­гаются рибосомы. При световой микроскопии они окрашиваются базофильно. В них синтезируются специфические белки, особенно альбумин, белки свёртывающей системы крови и ферменты. При этом рибосомы могут сворачиваться в спираль, образуя полисомы. В ШЭС синтезируется Г-6-Фаза. Из свободных жирных кислот синтезируются три­глицериды, которые в виде липопротеидных комп­лексов секретируются путём экзоцитоза. ШЭС мо­жет участвовать в глюкогенезе.

 

 

Рис. 1-14. Органеллы гепатоцита.

 

 

Гладкая эндоплазматическая сеть (ГЭС) образует тубулы и везикулы. Она содержит микросомы и является местом конъюгации билирубина, деток­сикации многих лекарств и других токсичных ве­ществ (система Р450). Здесь синтезируются стерои­ды, в том числе холестерин и первичные жёлчные кислоты, которые конъюгируют с аминокислотами глицином и таурином. Индукторы ферментов, на­пример фенобарбитал, увеличивают размеры ГЭС.

Пероксисомы располагаются поблизости от ГЭС и гранул гликогена. Их функция неизвестна.

Лизосомы — плотные тельца, примыкающие к жёлчным канальцам. Они содержат гидролитичес­кие ферменты, при выделении которых клетка разрушается. Вероятно, они выполняют функцию внутриклеточной очистки от разрушенных орга­нелл, срок жизни которых уже истёк. В них от­кладываются ферритин, липофусцин, жёлчный пигмент и медь. Внутри них можно наблюдать пиноцитозные вакуоли. Некоторые плотные тель­ца, расположенные около канальцев, называются микротельцами.

Аппарат Гольджи состоит из системы цистерн и пузырьков, которые также лежат около канальцев. Его можно назвать «складом веществ», предназна­ченных для экскреции в жёлчь. В целом эта груп­па органелл — лизосомы, микротельца и аппарат Гольджи — обеспечивает секвестрирование любых веществ, которые были поглощены и должны быть удалены, секретрированы или сохранены для ме­таболических процессов в цитоплазме. Аппарат Гольджи, лизосомы и канальцы подвергаются осо­бенно выраженным изменениям при холестазе (см. главу 13).

 

 

Рис. 1-15. Электронно-микроскопическая картина части нормального гепатоцита. Я — ядро; Яд — ядрышко; М — митохондрии; Ш — шероховатая эндоплазматическая сеть; Г — гранулы гликогена; mb— микроворсинки во внутри­клеточном пространстве; Л — лизосомы; МП — межкле­точное пространство.

 

 

Цитоплазма содержит гранулы гликогена, ли­пиды и тонкие волокна.

Цитоскелет, поддерживающий форму гепато­цита, состоит из микротрубочек, микрофиламен­тов и промежуточных филаментов [15]. Микро­трубочки содержат тубулин и обеспечивают пере­мещение органелл и везикул, а также секрецию белков плазмы. Микрофиламенты состоят из ак­тина, способны к сокращению и играют важную роль в обеспечении целостности и моторики ка­нальцев, тока жёлчи. Длинные ветвящиеся фила­менты, состоящие из цитокератинов, называют промежуточными филаментами [42]. Они соеди­няют плазматическую мембрану с перинуклеарной областью и обеспечивают стабильность и простран­ственную организацию гепатоцитов.

 

Синусоидальные клетки

 

Синусоидальные клетки (эндотелиальные клет­ки, клетки Купфера, звёздчатые и ямочные клет­ки) вместе с обращённым в просвет синусоида участком гепатоцитов образуют функциональную и гистологическую единицу [39].

Эндотелиальные клетки выстилают синусоиды и содержат фенестры, образующие ступенчатый ба­рьер между синусоидом и пространством Диссе (рис. 1-16). Клетки Купфера прикреплены к эндотелию.

Звёздчатые клетки печени располагаются в про­странстве Диссе между гепатоцитами и эндотели­альными клетками (рис. 1-17). Пространство Дис­се содержит тканевую жидкость, оттекающую да­лее в лимфатические сосуды портальных зон. При нарастании синусоидального давления выработка лимфы в пространстве Диссе увеличивается, что играет роль в образовании асцита при нарушении венозного оттока из печени.

Клетки Купфера. Это очень подвижные макро­фаги, связанные с эндотелием, которые окраши­ваются пероксидазой и имеют ядерную оболочку. Они фагоцитируют крупные частицы и содержат вакуоли и лизосомы. Эти клетки образуются из моноцитов крови и имеют лишь ограниченную способность к делению. Они фагоцитируют по механизму эндоцитоза (пиноцитоза или фагоци­тоза), который может опосредоваться рецептора­ми (абсорбционный) или происходить без участия рецепторов (жидкофазный) [41]. Клетки Купфе­ра поглощают состарившиеся клетки, инородные частицы, опухолевые клетки, бактерии, дрожжи, вирусы и паразитов. Они захватывают и перераба­тывают окисленные липопротеины низкой плот­ности (которые считаются атерогенными) [14] и удаляют денатурированные белки и фибрин при диссеминированном внутрисосудистом свёртыва­нии крови.

Клетка Купфера содержит специфические мем­бранные рецепторы для лигандов, включая фраг­мент Fc иммуноглобулина и компонент С3b ком­племента, которые играют важную роль в пред­ставлении антигена.

Клетки Купфера активируются при генерали­зованных инфекциях или травмах. Они специфи­чески поглощают эндотоксин и в ответ вырабаты­вают ряд факторов, например фактор некроза опу­холи, интерлейкины, коллагеназу и лизосомальные гидролазы. Эти факторы усиливают ощущение дискомфорта и недомогания. Токсическое действие эндотоксина, таким образом, обусловлено продуктами секреции клеток Купфера, поскольку сам по себе он нетоксичен.

 

 

Рис. 1-16. Электронная микрофотография синусоида, на которой видны фенестры (Ф), образующие ситовидные пластинки (С). П — паренхиматозная клетка; Д — пространство Диссе; М — микроворсин­ки; Э — эндотелиальная клетка.

Рис. 1-17. Электронная микрофотогра­фия звёздчатой клетки печени. Видны характерные жировые капли (Ж). С — просвет синусоида; Д — пространство Диссе. П — паренхиматозная клетка. К — жёлчный каналец. Я — ядро. М — мито­хондрия, х 12 000.

 Клетка Купфера секретирует также метаболи­ты арахидоновой кислоты, в том числе простаг­ландины [39].

Клетка Купфера имеет специфические мемб­ранные рецепторы к инсулину, глюкагону и ли­попротеинам. Углеводный рецептор N-ацетилгликозамина, маннозы и галактозы может служить посредником в пиноцитозе некоторых гликопро­теинов, особенно лизосомальных гидролаз. Кроме того, он опосредует поглощение иммунных комп­лексов, содержащих IgM.

В печени плода клетки Купфера выполняют эритробластоидную функцию. Распознавание и скорость эндоцитоза клетками Купфера зависят отопсонинов, фибронектина плазмы, иммуногло­булинов и тафтсина — естественного иммуномодуляторного пептида [25|.

Эндотелиальные клетки. Эти оседлые клетки об­разуют стенку синусоидов. Фенестрированные уча­стки эндотелиальных клеток (фенестры) имеют диаметр 0,1 мкм (см. рис. 1-16) и образуют сито­видные пластинки, которые служат биологическим фильтром между синусоидальной кровью и плаз­мой, заполняющей пространство Диссе. Эндоте­лиальные клетки имеют подвижный цитоскелет, который поддерживает и регулирует их размеры [11]. Эти «печёночные сита» фильтруют макромо­лекулы различного размера. Через них не прохо­дят крупные, насыщенные триглицеридами хило­микроны, а более мелкие, бедные триглицерида­ми, но насыщенные холестерином и ретинолом остатки могут проникать в пространство Диссе [16]. Эндотелиальные клетки несколько различаются в зависимости от расположения в дольке. При ска­нирующей электронной микроскопии видно, что количество фенестр может значительно уменьшать­ся с образованием базальной мембраны [22]; осо­бенно ярко эти изменения проявляются в зоне 3 у больных алкоголизмом.

Синусоидальные эндотелиальные клетки актив­но удаляют из кровообращения макромолекулы и мелкие частицы с помощью рецепторно-опосредованного эндоцитоза [40]. Они несут поверхностные рецепторы к гиалуроновой кислоте (главный поли­сахаридный компонент соединительной ткани), хондроитинсульфату и гликопротеину, содержаще­му на конце маннозу, а также рецепторы типа II и III к фрагментам FcIgG и рецептор к белку, связы­вающему липополисахариды [37]. Эндотелиальные клетки выполняют очистительную функцию, уда­ляя ферменты, повреждающие ткани, и патоген­ные факторы (в том числе микроорганизмы). Кро­ме того, они очищают кровь от разрушенного кол­лагена и связывают и поглощают липопротеины.

Звёздчатые клетки печени (жирозапасающие клетки, липоциты, клетки Ито). Эти клетки рас­положены в субэндотелиальном пространстве Дис­се. Они содержат длинные выросты цитоплазмы, некоторые из которых тесно контактируют с па­ренхиматозными клетками, а другие достигают нескольких синусоидов, где могут участвовать в регуляции кровотока и, таким образом, влиять на портальную гипертензию [6]. В нормальной пече­ни эти клетки являются как бы основным местом хранения ретиноидов; морфологически это про­является в виде жировых капель в цитоплазме. Пос­ле выделения этих капель звёздчатые клетки ста­новятся похожими на фибробласты. Они содержат актин и миозин и сокращаются при воздействии эндотелина-1 и вещества Р [36]. При повреждении гепатоцитов звёздчатые клетки утрачивают жиро­вые капли, пролиферируют, мигрируют в зону 3, приобретают фенотип, напоминающий фенотип миофибробластов, и вырабатывают коллаген типа I, III и IV, а также ламинин. Кроме того, они выде­ляют протеиназы клеточного матрикса и их инги­биторы, например тканевый ингибитор металлопро­теиназ (см. главу 19) [4, 23]. Коллагенизация про­странства Диссе приводит к снижению поступле­ния в гепатоцит субстратов, связанных с белком [46].

Ямочные клетки. Это очень подвижные лимфо­циты — естественные киллеры, прикреплённые к обращённой в просвет синусоида поверхности эн­дотелия [10]. Их микроворсинки или псевдоподии проникают сквозь эндотелиальную выстилку, со­единяясь с микроворсинками паренхиматозных клеток в пространстве Диссе. Эти клетки живут недолго и обновляются за счёт лимфоцитов цир­кулирующей крови, дифференцирующихся в си­нусоидах [43]. В них обнаруживаются характер­ные гранулы и пузырьки с палочками в центре. Ямочные клетки обладают спонтанной цитоток­сичностью по отношению к опухолевым и инфи­цированным вирусом гепатоцитам.

 

Взаимодействия синусоидальных клеток

 

Между клетками Купфера и эндотелиальными клетками, как и между клетками синусоидов и гепатоцитами, происходит сложное взаимодей­ствие. Активация клеток Купфера липополиса­харидами подавляет поглощение гиалуроновой кислоты эндотелиальными клетками. Этот эффект, возможно, опосредуется лейкотриенами [12]. Об­разованные клетками синусоидов цитокины могут как стимулировать, так и подавлять пролифера­цию гепатоцитов [26].

 

Внеклеточный матрикс

 

Внеклеточный матрикс становится видимым только при заболеваниях печени. В пространстве Диссе можно обнаружить все главные компоненты базальной мембраны, в том числе коллаген типа IV, ламинин, гепарансульфат, протогликан и фиб­ронектин [9]. Все клетки, образующие синусоид, могут участвовать и в образовании матрикса. Мат­рикс, находящийся в пространстве Диссе, влияет на функцию гепатоцитов, изменяя экспрессию тка­неспецифических генов, например гена альбумина, а также количество и порозность синусоидальных фенестраций [27]. Это может иметь значение для регенерации печени.

 


Нарушение микроциркуляции печени при патологии [46]

 

При заболеваниях печени, например при алкоголь­ном поражении, может нарушаться микроциркуля­ция печени из-за коллагенизации пространства Дис­се, образования базальной мембраны под эндотели­ем и изменения его фенестрированности [22]. Все эти процессы наиболее выражены в зоне 3. Они приводят к потере питательных веществ, предназначен­ных для гепатоцитов, и к развитию портальной ги­пертензии.

 

Адгезивные молекулы

 

При воспалении в печени часто обнаруживается инфильтрация лимфоцитами. Рецепторы на поверх­ности лимфоцитов, антиген, ассоциированный с функцией лейкоцитов (LFA-1), и молекулы меж­клеточной адгезии (ICAM-1 и ICAM-2) взаимо­действуют между собой. В норме ICAM-1 эксп­рессируется в основном на клетках, выстилающих синусоиды, и в незначительной степени — на пор­тальном и печёночном эндотелии (рис. 1-18) [1]. При реакциях отторжения трансплантата выявле­на индукция ICAM-1 в эпителии жёлчных путей, эндотелии сосудов и в перивенулярных гепатоци­тах. Экспрессия этих молекул адгезии на клетках жёлчных протоков показана при первичном били­арном циррозе и первичном склерозирующем хо­лангите [2].

 

Функциональная неоднородность [18]

 

Функции клеток, расположенных в периферичес­кой зоне кровообращения ацинуса, примыкающей к терминальным печёночным венам (зона 3), отли­чаются от функции клеток, примыкающих к тер­минальным печёночным артериям и портальным венам (зона 1; см. рис. 1-12 и 1-13; табл. 1-1) [191.

Ферменты цикла Кребса (ферменты синтеза мочевины и глутаминазы) в наиболее высоких кон­центрациях обнаруживаются в зоне 1, в то время как глутаминсинтетаза — в околовенозной зоне.

 

 

Рис. 1-18. Ткань нормальной печени, окрашенная на ICAM-1. Видно диффузное окрашивание клеток, выстилающих си­нусоиды, слабое окрашивание мембран некоторых гепато­цитов; жёлчные протоки не окрашиваются. См. также цветную иллюстрацию на с. 768.

 

 

Очевидно, что эти зоны различаются по снаб­жению кислородом: клетки зоны 3 получают кис­лород в последнюю очередь и особенно склонны к аноксическому повреждению.

Ферменты цитохрома Р450, участвующие в ме­таболизме лекарств, в основном сосредоточены в зоне 3. Это особенно ярко проявляется при ин­дукции ферментов, например, фенобарбиталом. Наиболее высокие концентрации токсичных про­дуктов метаболизма лекарств обнаруживаются в гепатоцитах зоны 3. Кроме того, в них снижена концентрация глутатиона, поэтому гепатоциты зоны 3 оказываются особенно восприимчивыми к лекарственным повреждениям печени.

 

Таблица 1-1. Метаболизм гепатоцитов в зависимости от их расположения в зоне 3 (центральной) или в зоне 1 (перипортальной) [19]

 

 

 

Зона 1

Зона 3

углеводы

Гликонеогенез

Гликолиз

Белки

Синтез альбумина и фибриногена

Синтез альбумина и фибриногена

Цитоxром P450

+

++

После воздействия фенобарбиталом

+

++++++++

Глутатион

++

Снабжение кислородом

+ + +

+

Образование жёлчи, зависящее от желчных кислот

++

Образование желчи, не зависящее от жёлчных уислот

++

Синусоиды

Мелкие

Много анастомозов

Прямые

Радиальные

 

Гепатоциты зоны 1 получают кровь с более вы­сокой концентрацией жёлчных кислот и поэтому играют особенно важную роль в образовании жёл­чи, зависящем от жёлчных кислот. Гепатоциты зоны 3 участвуют в образовании жёлчи, не завися­щем от жёлчных кислот. Кроме того, имеются зо­нальные различия в скорости переноса веществ из синусоидов в жёлчные канальцы.

Причины метаболических различий между зо­нами различны. Одни функции (гликонеогенез, гликолиз, кетогенез) зависят от направления дви­жения крови по синусоидам, другие (осуществля­емые цитохромом Р450) — от скорости транскрип­ции генов, которая неодинакова в перивенулярных и перипортальных гепатоцитах [18]. В печени плода выявлены различия в экспрессии глутамин-синтетазы в разных участках ацинуса.

 

Перенос через синусоидальную мембрану [5]

 

Синусоидальная мембрана гепатоцита представ­ляет собой домен, который содержит большое ко­личество рецепторов и обладает высокой метабо­лической активностью. Он отделён от жёлчного канальца латеральным доменом, который участву­ет в межклеточном взаимодействии (см. рис. 1-14). Рецепторно-опосредованный эндоцитоз обес­печивает перенос крупных молекул, таких, как гликопротеины, факторы роста и белки-перенос­чики (трансферрин). Эти лиганды связываются с рецепторами синусоидальной мембраны, которые образуют окаймлённые клатрином ямки, обеспе­чивающие начало эндоцитоза. Судьба лиганда внутри клетки различна (рис. 1-19). Многие лиганды переносятся в лизосомы, где разрушаются, а ре­цепторы возвращаются на синусоидальную мемб­рану для повторного использования. Некоторые ли­ганды переносятся в составе пузырьков через клет­ку и выделяются в просвет жёлчных канальцев.

 

 

Рис. 1-19. Пути эндоцитоза начиная от синусоидальной мембраны. ПСМ — плазматическая синусоидальная мембрана; К — жёлчный каналец; Л — лизосома; Я — ядро; МРРЛ — место разделения рецептора и лиганда). -Рецепторы, связанные с лигандами, группируются, образуя окаймлённую ямку. Происходит эндоцитоз, приводящий к образованию окаймлённого пузырька, который затем теряет клатриновую оболочку и сливается с другими пузырьками с образованием ранней эндосомы (участок сортировки). В дальнейшем возможны следующие пути: 1 — пузырёк переносится к жёлчному канальцу, где лиганд и рецептор выделяются (трансцитоз, например, полимерного IgA); 2 — перенос лиганда и рецептора в лизосому, где они разрушаются; 3 — рецептор и лиганд переносятся в МРРЛ. Рецептор отделяется от лиганда и возвращается на плазматичес­кую мембрану синусоида. Лиганд входит в лизосому и разрушается (например, липопротеины низкой плотности, асиалогликопротеины, инсулин); 4 — лиганд и рецептор возвращаются на плазматическую мембрану (например, трансферрин и его рецептор после выделения железа).

 

 

Эпителиальные клетки жёлчных канальцев

 

Эпителиальные клетки жёлчных канальцев уда­лось выделить из печени крысы |3| и получить их короткоживущую культуру. Показано, что эти клет­ки осуществляют рецепторно-опосредованный эн­доцитоз фактора роста эпидермиса и его экзоци­тоз, регулируемый секретином |24|.

Чего боятся «беременные» мужчины?

беременность, страх беременности, боязнь беременности, психология мужчин
Психологическая перестройка, происходящая с женщинами во время беременности, изучается…

Почему у женщин болит голова?

головная боль у женщин, почему болит голова, болит голова
«У меня болит голова» - эта фраза уже стала банальной, и навсегда прописалась в местном…

Любриканты увеличивают риск вагинальных инфекций

Американские ученые из Калифорнийского университета опросили и обследовали 140 женщин в…

Семь сладостей, от которых не толстеют

сладости, похудение, фигура
До чего замечательно законсить сытный обед чайком с какой-нибудь сладенькой вкусностью.…

Возрастные мужские интимные проблемы

нарушения эрекции
Множество исследований определило, что сексуальное желание по мере старения никуда не…

Злаковые могут быть вредны детям.

целиакия, глиадин
Целиакия - это непереносимость глиадина, являющейся составной частью клейковины ржи и…
Вы здесь: Главная - Разделы медицины - Терапия - Заболевания печени - Анатомия и функции печени - Морфология печени